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A new symmetric and positive definite boundary element method in the time domain is
presented for the dynamic analysis of thin elastic plates. The governing equations of the
problem are obtained from a variational principle in which a hybrid modified functional
is employed. The functional is expressed in terms of the domain and boundary basic
variables in plate bending, assumed to be independent of each other. In the discretized
model the boundary variables are expressed by nodal values, whereas the internal
displacement field is modelled by a superposition of static fundamental solutions. The
equations of motion are deduced from the functional stationarity conditions and they
constitute a linear system of ordinary differential equations expressed in terms of nodal
displacements. The structural operators are frequency independent and preserve the
symmetry and definiteness properties of the continuum. Moreover these operators are
calculated by performing boundary integrations of regular kernels only. Some applications
to free vibrations and self-excited vibrations under aerodynamic loads have been worked
out to test the accuracy of the proposed method. The numerical results have been found
in very good agreement with those obtained by using other solution techniques by which
the accuracy of the present boundary element model is demonstrated.
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1. INTRODUCTION

The analysis of lateral vibrations of plates is a subject of great importance in engineering
practice due to the very diffuse employment of these structural members. The plate
dynamic problem has been approached by using both analytical and numerical methods.
However, realistic problems of dynamic analysis of thin elastic plates with complicated
geometries and boundary conditions can be solved only numerically. The most popular
method employed for plate lateral vibration investigation is the finite element method
(FEM) [1], which has been applied by many researchers to solve various problems.
Recently, the boundary element method (BEM) has been proposed as an accurate and
effective technique to approach plate vibrations and dynamic problems in general [2, 3].
According to the first integral formulation for elastodynamics presented by Cruse and
Rizzo [4], some authors have developed direct boundary element approaches both in the
time domain and in the frequency domain [5–9]. These methods require the use of dynamic
fundamental solutions expressed in terms of Hankel functions of complex argument,
involving the frequency. As a result of this, the free vibration problem is governed by
frequency dependent complex matrices and its solution is therefore based on the
computational inefficient zero-determinant searching. To obtain a more efficient and
versatile BEM model for plate dynamics, Bezine [10] proposed the employment of static
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fundamental solutions. Unfortunately, this approach gives rise to a domain integral related
to the inertia forces which affects the pure boundary character of the dynamic model.
Many different approaches have been presented in the field of the so-called
boundary-domain element method. Tanaka et al. [11], Providakis and Beskos [12] and
Katsikadelis [13] have presented boundary-domain formulations which require a domain
discretization and the evaluation of domain integrals with the consequent increase in the
computational effort. Various techniques have been developed in order to recover the pure
boundary character of the dynamic model. The most successful and effective approach to
overcome the drawback of the domain discretization is the Dual Reciprocity Method
proposed by Nardini and Brebbia [14]. The application of the Dual Reciprocity BEM
[15–17] leads to a linear system, obtained by using a boundary discretization only, with
obvious computational advantages. However, in all of the dynamic models proposed, the
properties of symmetry and positive definiteness of the continuum are lost and the discrete
structural operators are neither symmetric nor positive definite. The loss of these
fundamental properties of the continuum makes less efficient the coupling between
domains treated by boundary elements and those treated by finite elements which is the
best solution for the modelling of many engineering problems. More recently, some
variational formulations of BEM have been developed for both elastostatics and
elastodynamics [18–23] with the aim of preserving the above-mentioned operator
properties. In this paper, a hybrid variational formulation of BEM for plate dynamics is
presented, with particular care devoted to plate lateral vibration problems. The method
proposed is based on a formulation previously presented by the authors [21–23], which
is extended here to analyze the dynamic behaviour of plates. In the method, the domain
variables are approximated by a linear combination of static fundamental solutions,
whereas the boundary variables are expressed through nodal parameters. In the present
work, due to the use of the Kirchhoff approximate linear plate bending theory, internal
nodal parameters other than those related to the boundary discretization are also
considered. By so doing, the modelling accuracy and efficiency are improved, fitting the
original formulation [22, 23] to the problem. The discrete structural operators are
frequency independent, symmetric and positive definite. Moreover, they are calculated by
performing integrations of non-singular functions on the boundary only. The resolving
system is given by a linear system, expressed in terms of displacements, which does not
differ in nature from the matrix equations of a finite element formulation. This allows the
employment of standard numerical procedures for the solution and makes more efficient
the coupling between domains treated by BEM and those treated by FEM. Some
applications are presented to test and validate the accuracy and the efficacy of the method
proposed. Classical cases of plate free lateral vibrations are treated together with the
typical aeronautical problem of the self-excited oscillations experienced by a plate
subjected to a supersonic flow on one of its faces, namely ‘‘panel flutter’’ [24]. The last
problem has been investigated by using different techniques [25–30] but, to the authors’
knowledge, never treated by BEM.

2. BASIC EQUATIONS

Consider a thin, homogeneous, isotropic and linear elastic plate with V its middle surface
occupying a region of the x–y plane bounded by the contour G. According to the Kirchhoff
small deflection theory, the behaviour of the plate is determined once the deflection
function w is known. The displacement field is given by

u=−z
1w(x, y, t)

1x
, v=−z

1w(x, y, t)
1y

, w=w(x, y, t), (1–3)
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where t is the time. The strain field is

e=&exx

eyy

exy'= zDw= zo, (4)

where o denotes the generalized strain vector and D is defined as

D=[−12/1x2 − 12/1y2 −2 12/1x 1y]T. (5)

The corresponding generalized stresses are the usual bending and twisting moments per
unit lengths, and can be expressed as

s= &Mxx

Myy

Mxy'=Eo=EDw, (6)

where

1 v 0

E=DG
G

G

K

k

v 1 0 G
G

G

L

l
, (7)

0 0
1− v

2

in which D is the flexural rigidity of the plate and n is the Poisson’s coefficient. With this
notation [1], the dynamic equilibrium equation of the plate can be written as

DTEDw+mẅ − q=0, (8)

where m is the mass density per unit area, q= q(x, y, t) is the applied lateral distributed
load per unit area and the overdots indicate time derivatives. Moreover, on the constrained
boundary G1 the deflection w must satisfy the prescribed kinematical boundary conditions,
which are expressed as

u= u� on G1 , (9)

where u is the boundary generalized displacement vector the components of which are the
deflection w and the normal slope −1w/1n, whereas the overbar denotes prescribed data.
On the free boundary G2 the mechanical boundary conditions need to be satisfied,

t= t� on G2 , (10)

where the components of the boundary generalized traction vector t are the equivalent
shear force Teq and the normal bending Mn . For a plate with NC corners, the mechanical
boundary conditions have to be supplemented by the corner conditions

>Mnt >i = >M�nt >i , i=1, . . . , NC2 , (11)

where NC2 is the number of free corner points and >Mnt >i denotes the fictitious corner
force due to the jump of discontinuity of the twisting moment at the ith corner on G2 .
The deflection w is also subjected to the initial conditions

w(x, y, 0)= w̄(x, y), ẇ(x, y, 0)= w̄� (x, y). (12, 13)



. ̀  . 510

3. VARIATIONAL PRINCIPLE

The boundary model for plate dynamics proposed in this paper is based on a modified
variational principle previously presented by the authors [21–23]. Let w be the deflection
of the plate in the domain V and again let ũ and t	 be the boundary generalized displacement
and traction vectors. The functions w, ũ and t	 are assumed independent of one another.
According to references [21–23] and [31] the modified variational principle states that the
functional

P=gV

[ 1
2o

TEo−w(q−mẅ)] dV−gG

(u− ũ)T t	 dG−gG2

ũT t�dG

+ s
NC

i=1

�(w− w̃) > M	 nt >�i + s
NC2

i=1

�w̃ > M�nt >�i (14)

is made stationary by the solution of the governing equations of plate dynamics. The
notations > · > and �·�i indicate the corner force and the value of the function at the ith
corner point, respectively. The variation of the functional P with respect to the
independent variables, taking into account the kinematical boundary conditions on G1 ,
namely

ũ= u� on G1 , (15)

yields, through integration by parts,

1P=gV

(DTEDw+mẅ − q)T 1w dV−gG

(u− ũ)T 1t	 dG+gG

(Dnw− t	 )T 1u dG

−gG2

(t�− t	 )T 1ũ dG− s
NC

i=1

�(> Mnt > −>M	 nt > ) 1w�i − s
NC2

i=1

�(> M	 nt >− > M�nt > ) 1w̃�i .

(16)

In equation (16), Dn denotes the operator that provides the boundary generalized traction
vector t in terms of the deflection w,

t=$Teq

Mn%=Dnw, (17)

where

−D6 1

1n 0 12

1x2 +
12

1y21+(1− v)
1

1s
1

1n
1

1s7
Dn =G

G

G

G

G

K

k
−D6 12

1x2 +
12

1y2 + (v−1)
12

1s27
G
G

G

G

G

L

l

(18)

and n and s are the normal and tangent directions at the boundary G, respectively. The
stationarity conditions of equation (16), for arbitrary variations 1w in V, 1t	 on G and 1ũ
on G2 , give the following set of equations:
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DTEDw+mẅ − q=0 in V, (19)

ũ= u on G, t	 = t on G, t	 = t� on G2 , (20–22)

>M	 nt >i = >Mnt >i , i=1, . . . , NC, >Mnt >i = >M� nt >i , i=1, . . . , NC2 . (23, 24)

Thus, on the assumption that the compatibility equations (4) and the constitutive
equations (6) are satisfied and that the boundary conditions (15) are identically satisfied,
the solution of the plate dynamic problem is given in terms of the functions w, ũ and t	
which make P stationary.

4. DISCRETIZATION OF THE FUNCTIONAL

In order to obtain a model for the plate dynamic problem by using the variational
principle previously described, one can consider the plate boundary discretized by
boundary elements. Also, one can consider some additional nodes within the domain V

other than those introduced by the boundary discretization. The domain displacement field
is approximated by means of a linear combination of trial functions w*i :

w= s
i

w*i si (25)

The trial functions w*i are chosen to be the solutions in an infinite plate corresponding
to a generic load q*i . Thus these solutions correspond to the solutions of the equation

DTEDw*i = q*i (x, y) (26)

in an infinite domain. The generalized displacements on the boundary G can be therefore
expressed in terms of trial functions as

u=$ w
−1w/1n%=$ W*

−1W*/1n% s=U*s, (27)

where s is the vector of the unknown time dependent coefficients si and W* is the matrix
of the trial functions w*i . The boundary generalized displacement and traction variables
are expressed as

ũ=$ w̃
−1w̃/1n%=Nd=$Nw1

N81

Nw2

N82%$d1

d2%, (28)

t	 =$T	 eq

M	 n%=Cp, (29)

where d and p are the nodal displacements and tractions, N and C are matrices of shape
functions, and the subscripts 1 and 2 refer to constrained and free nodal displacements
respectively. By substituting these approximations for w, ũ, and t	 in equation (14), the
expression for the functional P for the plate is obtained in its discretized form. The
stationarity conditions of P with regard to s, d2 and p, after integration by parts, yield

0gG

U*TP* dG− s
NC

i=1

�W*T>M*nt >�i +gV

W*TQ* dV1 s+m gV

W*TW* dV s̈
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−gV

W*Tq dV−gG

U*TC dGp+ s
NC

i=1

�W*T>M	 nt >�i = 0, (30)

gG

NT
2 C dGp−gG2

NT
2 t�dG+ s

NC2

i=1

�NT
w2 >M�nt >�i − s

NC

i=1

�NT
w2 >M	 nt >�i = 0, (31)

gG

CTU* dGs−gG

CTN dGd= 0, (32)

where P* is the matrix of the generalized boundary tractions associated with the trial
functions w*i , whereas the vector Q* contains the relative loads q*i . Equation (32) is
satisfied for every choice of C if

U*s=Nd on G. (33)

The relations between the unknown parameters s and the nodal generalized displacements
d can be established as follows. Evaluating equation (33) at the boundary nodal points,
by virtue of the properties of the shape functions, one obtains n relationships between s
and the boundary nodal displacements dn , namely,

U�*s= dn , (34)

where the elements of matrix U�* are the values of the functional matrix U* at the boundary
nodes. In a similar way, collocating equation (25) at the internal nodes, m extra
relationships can be established:

W� *s= dm . (35)

In equation (35) the elements of the matrix W� * are the values of W* calculated at the
internal nodes and dm is the internal nodal displacement vector. If the number of trial
functions is chosen to be equal to the number of nodal displacements, and these functions
are regular and linearly independent, then the matrix

L=$U�*
W� *% (36)

is square and regular and possesses an inverse F=L−1. Therefore, from equations (34)
and (35) one has

s=L−1$dn

dm%=F$dn

dm%=[Fn Fm ]$dn

dm%=[F1 F2 ]$d1

d2%. (37)

Equations (33) and (37) imply the following expression for N in terms of trial functions;

N=U*L−1 =U*F=U*[F1 F2 ]= & W*

−
1W*
1n '[F1 F2 ]=$Nw1

N81

Nw2

N82%. (38)
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Pre-multiplying equation (30) by FT
2 , by using equations (31) and (37), one obtains the

plate dynamic model, which can be written as

Md� 2 +Kd2 =gG2

NT
2 t�dG−gV

NT
w2q dV− s

NC2

k=1

�NT
w2 >M�nt >�k −FT

2 BF1d� 1 −FT
2 AF1d1 ,

(39)

where the stiffness matrix K and the mass matrix M are given by

K=FT
2 0gG

U*TP* dG− s
NC

i=1

�W*T>M*nt >�i +gV

W*TQ* dV1F2 =FT
2 AF2 , (40)

M=FT
2 m gV

W*TW* dVF2 =FT
2 BF2 . (41)

Notice that the matrices K and M are frequency independent, symmetric and positive
definite [22, 23]. Therefore, in the approach proposed, these two fundamental properties
of the continuum, i.e., symmetry and definiteness of the structural operators, are preserved.

5. BOUNDARY MODEL

In the boundary model based on the proposed formulation, the trial functions w*i are
chosen to be the static fundamental solutions in an infinite plate corresponding to a point
load and a point couple with magnitude c*i , applied at the location zi which is referred
as the source point [32]. The fundamental solution due to a point load corresponds to the
solution of the equation (26) for a load q*i defined as

q*i = c*i d(x− zi ) (42)

where d(x− zi ) denotes Dirac’s function. This fundamental solution is

w*i = c*i (r2/8p) ln r, (43)

where r is the distance between the observed point x and the source point zi . The
fundamental solution due to a point couple about an axis orthogonal to the boundary
outer normal n can be directly obtained applying the operator 1/1n to the fundamental
solution (43), and it is therefore given by

w*i = c*i (r/8p) (2 ln r+1) 1r/1n. (44)

It is worth noting that these fundamental solutions possess the properties requested by the
formulation; i.e., they are regular and numerically independent. The trial functions
considered, which are associated with the source points, are well suited for computer
implementation since they can be directly correlated with the nodal points. According to
equation (34), for the boundary nodes where there are two unknown nodal generalized
displacements, namely the nodal deflection and normal slope, both the fundamental
solutions are defined with the same source point. On the other hand at the internal nodes,
as the nodal deflection is the sole unknown, only the fundamental solution due to a point
load is considered in accordance with equation (35). For the fundamental solutions carried
by the internal nodes the source point is chosen coincident with the node, whereas the
source point of the fundamental solutions associated with boundary nodal points is located
outside the domain along the boundary outer normal at the node. With this choice of the
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trial functions, remembering the properties of integrals involving Dirac functions, the
domain integral in the stiffness matrix definition, equation (40), can be directly evaluated
and the calculation of the stiffness matrix requires only boundary integrations. Moreover,
due to the choice of the source points which do not lie on the plate boundary, the kernels
involve only non-singular functions with the consequent advantages in computation. The
other domain integral that appears in the definition of the mass matrix M should require
a discretization of the plate domain. To obtain a pure boundary model of the discretized
plate, a transformation of this domain integral into boundary integral needs to be
performed [22]. Consider the plate loaded by a system of domain forces w*j , where w*j is
the jth fundamental solution. A displacement field 8j due to this body forces is given by
a solution of the equation

DTED8j −w*j =0 in V. (45)

By applying the reciprocity theorem to the solution 8j due to the body forces w*j and to
the fundamental solution w*i , the generic element Bij of the matrix B can be expressed as

Bij =m gV

w*i w*j dV=m gV

w*i DTED8j dV=mD gG 6w*i
1

1n
(928j )+92w*i

18j

1n

−8j
1

1n
(92w*i )−928j

1w*i
1n 7 dG+mc*i gV

8jd(x− zi ) dV. (46)

Equation (46), taking again the Dirac’s function properties into account, allows one to
express the mass matrix in terms of boundary integrals. The expressions for the auxiliary
functions 8j associated with the fundamental solutions, equations (43) and (44), are
obtained by integrating analytically equation (45). They are given, respectively, by

8j = c*j (r6/4068p) (ln r− 5
6 ), 8j = c*j (r5/1152p) (3

2 ln r−1) 1r/1n, (47, 48)

By performing the above-described transformation both the mass matrix and the stiffness
matrix can be calculated through integration of regular kernels on the boundary only, thus
recovering the pure boundary character of the formulation. The dynamic model obtained
is constituted of a set of linear differential equations that exhibits the same nature of the
most common finite element dynamic resolving systems. Therefore, for the numerical
solution, the present Displacement Boundary Method (DBM) allows the application of the
standard procedures available for FEM models coupled with the BEM computational
advantages.

6. APPLICATIONS AND NUMERICAL RESULTS

Solutions of some problems of plate lateral vibrations are presented here in order to
show the accuracy and the efficacy of the proposed method on the basis of which a new
computer code has been developed. The applications performed deal with the classical case
of the free vibrations of rectangular plates and the so-called panel flutter; i.e., the
self-excited oscillations of plates under non-conservative aerodynamic loads. The
structural operators are computed through Gaussian quadrature, performing boundary
integrations only in accordance with the expressions given in equations (40), (41) and (46).
The regular kernels associated with the boundary nodes have been obtained by locating
the fundamental solution source point outside the domain along the outward directed
normal at the nodal point. The solutions presented are relative to a ratio between the
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point from the nodal point and the element length equal to 1. It is worth noting that this
parameter can be varied within a range of 0·5–2·0 without appreciable influence on the
solution accuracy as shown in previous papers [21–23]. The kernels associated with the
internal nodes, if these are considered, are instead obtained by making the fundamental
solution source point coincident with the node. By virtue of the nature of the resolving
system obtained, either for the eigenvalue problem relative to the free vibration or for that
linked to the panel flutter analysis, classical standard procedures can be employed for the
numerical solution.

6.1.  

For the free vibration analysis, equation (39) reduces to the classical form

(K−v2M)d
 2 = 0, (49)

where v is the natural frequency of the plate. As the matrices K and M are frequency
independent, symmetric and positive definite, the standard power method can be used for
eigenvalue searching. The first example presented deals with the free lateral vibrations of
a fully simply supported rectangular plate with side ratio a/b=2, where a is the length
and b is the width of the plate. A convergence analysis was carried out with and without
the use of additional internal points. The criterion for the choice of the additional internal
nodes was to locate them at the intersections of the lines which join corresponding
boundary nodes of opposite sides. The convergence curves for the first three modes are
shown in Figure 1 in terms of the error with respect to the analytical solution. They reveal
the fast convergence rate of the method. It is worth noting that the use of internal points
improves the modelling accuracy and therefore gives, as expected, a faster convergence
rate. This is due to the introduction of additional dynamic degrees of freedom other than
those on the boundary which give the means for an adequate description of the deflection
w of the plate by trial functions. The second application deals with the study of fully
clamped rectangular plates of different side ratios. The criterion for the choice of the
internal nodal points was the same as in the previous example. The results obtained are
shown in Table 1, where the number of boundary nodes employed for the analysis is given

Figure 1. Convergence curves for the simply supported rectangular plate (a/b=2). W, Mode 1; R, mode 2;
Q, mode 3, , Boundary and internal nodes; — - —, boundary nodes only.
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T 1

Natural frequencies for fully clamped rectangular plates

Boundary
b/a nodes v1 v2 v3 v4 v5 v6

1 40 36·049 73·626 73·626 108·883 132·336 132·336
(35·984) (73·408) (73·408) (108·200) (131·920) (131·920)
[35·992] [73·412] [73·412] [108·272] [131·640] [132·252]

1·25 30 29·999 52·917 69·426 90·861 91·425 129·488
(29·888) (52·520) (68·520) (89·241) (89·360) (124·323)

1·5 30 27·131 42·071 67·157 67·616 81·811 103·972
(26·994) (41·720) (66·124) (66·528) (79·800) (100·800)

2 30 24·723 32·149 45·503 65·010 65·414 73·307
(24·480) (31·824) (44·760) (63·320) (64·000) (71·080)

2·5 30 23·808 28·125 36·054 47·943 64·09 65·177
(23·520) (27·808) (35·404) (46·680) (61·480) (63·08)

3 30 23·361 26·162 31·317 39·164 49·986 63·140
(23·060) (25·860) (30·712) (38·092) (47·960) (60·320)

The values in parentheses are accurate, adapted from reference [33], and the values in square brackets are from
reference [34].

and a comparison with the solution of references [33] and [34] is presented. All the results
computed are in good agreement with those existing in the literature, whereby the accuracy
and the capabilities of the proposed method are demonstrated.

6.2.  

Consider a thin, flat plate with thickness h, length a, width b and mass density r. The
panel is subjected on one of its faces to a supersonic airstream flowing along direction x
with air density ra , flow velocity Ua and Mach number Ma , as shown in Figure 2. Upon
assuming that two-dimensional quasi-steady first order piston theory aerodynamics is
accurate, the aerodynamic pressure acting on the panel is [35]

q=Dp=−
raU2

a

(M2
a −1)1/2

1w
1x

−
raUa (M2

a −2)
(M2

a −1)3/2

1w
1t

. (50)

By substituting equation (50) into the domain force term of equation (39), and dividing
by D/a3, where D is the plate flexural rigidity, the panel flutter equation is obtained in its
classical non-dimensional form [29]:

Md� 2 + gCd� 2 + (K+ lKA )d2 = 0. (51)

Figure 2. The panel configuration.
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In the previous relation, M and K are the non-dimensional mass and stiffness matrices,
defined in accordance with section 4, whereas

C=FT
2 gV

W*TW* dVF2 =M, and KA =FT
2 gV

W*T 1W*
1x

dVF2 =FT
2 UF2

(52, 53)

model the damping and stiffness aerodynamic operators. The quantities l and g are defined
as

l= raU2
aa3/D(M2

a −1)1/2, g=(M2
a −2)raUa /(M2

a −1)3/2rhv0 , (54, 55)

where

v0 =zD/rha4. (56)

Like the mass matrix, the aerodynamic stiffness matrix KA can also be expressed in terms
of boundary integrals, with a consequent improvement in its computation. Indeed,
according to the technique described for the transformation of the mass matrix, the domain
integral involved in the definition of the generic element Uij of the matrix U can be
transformed as follows:

Uij =gV

w*i
1w*j
1x

dV=gV

w*i 0DTED
18j

1x1 dV=D gG 6w*i
1

1n 092018j

1x11+92w*i
1

1n 018j

1x1
−

18j

1x
1

1n
(92w*i )−92018j

1x1 1w*i
1n 7 dG+ c*i gV

18j

1x
d(x− zi ) dV. (57)

With the displacements assumed to be exponential functions of time the solution of
equation (51) is sought in the form

d2 = d
 2 eat, (58)

where, in general, a= j+jv is a complex number. Under this assumption, by simple
algebraic manipulations [29], equation (51) provides the following eigenvalue problem
governing the panel flutter problem:

(K+ lKA − kM)d
 2 = 0. (59)

Here

k=−(a/v0 )2 − g
a

v0
= k1 + jkR (60)

The matrices K and M are symmetric and positive definite, whereas the master
aerodynamic matrix KA is non-symmetric. Hence non-real eigenvalues k are expected for
lq 0. For l=0, the classical free vibration case is recovered, and the eigenvalues are all
real and positive. As l is increased from zero, two of these eigenvalues will usually
approach each other and coalesce to l= lcoal and become complex conjugate pairs for
lq lcoal , giving rise to self-excited lateral vibrations. This instability occurs at the value
l= lcr , for which the following condition is satisfied [29]:

g= kI /zkR. (61)
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T 2

Coalescence results for two sides simply supported panel

Number of elements lcoal kcoal

12 339·575 1039·2
16 343·234 1051·6
20 343·365 1051·9

Exact (reference [29]) 343·356 1051·8

The flutter boundary, i.e., the value of l at which flutter appears, is therefore obtained
by solving the eigenvalue problem of equation (59) for different values of the dynamic
pressure l and searching for the condition (61). The most popular case of a panel simply
supported along two opposite sides was analyzed and the results compared with those
already available in the literature. The results obtained are shown in Table 2 for different
discretization schemes in order to test the method convergence rate for this kind of
problem. For this analysis no internal points were used because, by virtue of the boundary
conditions, the number of boundary degrees of freedom is sufficient to model adequately
the lateral displacement w of the plate. The comparison of the coalescence dynamic
pressure lcoal and the relative first two coalesced eigenvalues k1 = k2 = kcoal with the exact
values proves that an excellent approximation is obtained employing only a small number
of boundary nodes. The variation of the eigenvalues with the dynamic pressure for the
panel discretized by using only 20 boundary nodes is shown in Figure 3. The eigenvalues
k1 and k2 coalesce at lcoal =343·36, which is the critical dynamic pressure lcr for linear
flutter with no aerodynamic damping (g=0). If some damping is present panel flutter
occurs at a value higher than the coalescence dynamic pressure as shown in Figure 4, where
the typical response parameters, namely the modal damping parameter j and the pulsation
v, are plotted against l for two different values of the aerodynamic damping g. A
comparison of the present results with those obtained by other authors is shown in
Figure 5. The panel flutter analysis was also performed for a fully simply supported panel

Figure 3. Variation of the eigenvalues with dynamic pressure for the two sides simply supported panel. ——,
Present; w, Mei [29].
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Figure 4. A typical plot of response parameters j and v against dynamic pressure, w, Flutter condition, ——,
g=0; · · · · , g=10.

with side ratio a/b=2. Owing to the symmetry of the aerodynamic forces about the
centreline of the plate along the flow direction, only half of the plate was used in the
analysis. By so doing, no internal nodes were needed and the desired accuracy was obtained
employing 20 boundary nodes only. For this example, the value of the critical dynamic
pressure is lcr =1091·2, which compares well with the results available in the literature,
as shown in Table 3. The results presented prove the accuracy and the effectiveness of the
proposed method, also for the investigation of dynamic instability problems.

Figure 5. Critical dynamic pressure versus aerodynamic damping. ——, Present; w, Dowell [26]; q, Kuo et
al. [28]; r, Sarma and Varadan [30].
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T 3

Coalescence results for fully simply supported panel (a/b=2)

lcoal = lcr

Present 1091·20
Dugundji [25] 1093·24

Kariappa et al. (Ref. 27) 1110·46

7. CONCLUSIONS

A new Displacement Boundary Method (DBM) in the time domain for plate lateral
vibration analysis has been presented. The formulation, which is based on a modified
variational principle, gives a resolving system that involves nodal displacements. The
stiffness and the mass matrices of the boundary discretized body are frequency
independent, symmetric and positive definite. They are evaluated by performing boundary
integrations only and no integrations of singular kernels are required. Due to the symmetry
and definiteness of structural operators, the resolving system exhibits the same properties
as the more popular FEM resolving systems, thus allowing the application of standard
numerical procedures for the solution, coupled with the computational advantages of
BEM. Free vibration analysis of rectangular plates has been carried out, and in this case
the search for the natural frequencies comes down to the solution of a classic algebraic
eigenvalue problem. Self-excited lateral vibrations induced by non-conservative
aerodynamic loads have also been considered to test the ability of the formulation of
treating with dynamic instability problems. The results obtained for free and self-excited
vibrations are in good agreement with the solutions available in the literature. The new
method described here is shown to be very efficient and accurate. The role played by the
use of internal nodal points is pointed out. In fact, they are used only when the number
of boundary degrees of freedom is inadequate to model the plate internal behaviour
through trial functions, or when the higher modes of vibration need to be computed with
particular accuracy. The good results obtained suggest the possible application of the
method proposed to the solution of many plate dynamic problems, with meaningful
computational advantages with respect to the more common field methods.
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